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Probabi l i ty  me thods  have proven to be useful in various 
aspects of the  problem of crystal s tructure determinat ion.  
Wilson (1949) was the  first to obtain probabil i ty  distribu- 
t ions for the  magn i tude  of a s t ructure factor and  this 
work has been developed fur ther  (Howells,i Phillips & 
Rogers, 1950; Wilson, 1950, 1951; Rogers & Wilson, 
1953). More accurate distributions,  valid for all space 
groups, were obta ined later (Karle & Haup tman ,  1953; 
H a u p t m a n  & Karle, 1953a). In  the mean t ime  a probable 
relationship among the phases of certain sets of s t ructure 
factors had  been found by Sayre (1952), Cochran (1952) 
and  Zachariasen (1952). The probabil i ty  approach has 
recent ly  led to a solution of the  phase problem for all 
cent rosymmetr ic  space groups (Haup tman  & Karle, 
1953b, 1954), and  appears to be applicable to non-centro-  
symmetr ic  space groups as well. Probabi l i ty  distr ibutions 
for in teratomic vectors have also been obta ined (Haupt-  
man  & Karle, 1952). In  view of the  past  successes of the  
probabil i ty  methods ,  the  quest ion m a y  well be asked 
whether  probabi l i ty  distr ibutions for a tomic coordinates 
m a y  not  be obta ined directly, ra ther  t han  probabi l i ty  
distr ibutions of phases. The purpose of this note  is to 
obta in  these distr ibut ions for all the  space groups.* 

We t rea t  first the  cent rosymmetr ic  crystal. The crystal 
s t ructure factor Fh is defined by 

~V /n 

]=1 

where N is the  number  of a toms in the  uni t  cell, n is the  
s y m m e t r y  number ,  fs~ is the  atomic scat ter ing factor, 
and  ~ih is some t r igonometr ic  funct ion of the  atomic 
coordinates which depends on the  space group, e.g. for 
P1,  ~ = 2 cos 2r~(hxs+kyi+lz)). 

In  order to find the  probabi l i ty  dis t r ibut ion of the 
a tomie coordinates x~, yi, zi of the first a tom with respect 
to a sui tably chosen center  of s y m m e t r y  as origin, on 
the  basis t ha t  a set of m structure  factors Fh , p ---- 1, 
. . . .  m, have the  known values Ah~, we make  use of the  
relat ion 

(~1,~.  • • t lhm,  A h l . . .  Ahm) 

= K ( A h l . . . A h m ,  ~1h1""" ~lhm) , (2) 

where the  left member  of (2) is the  probabi l i ty  t ha t  
~m, , p = 1 . . . . .  m, lie be tween  ~lh~ and  ~lh~+d~lh. 
aftgr it is known tha t  the  s t ructure  factors Fh~, # = 1, 
. . . ,  m, have the  values Ah~; K is a normalizing factor 

* In this note we do not treat the case that  atoms may 
occur in special positions. Should these methods prove useful, 
the extension to special positions may be readily carried out. 

independen t  of the  atomic coordinates xl, Yl, Zl and  the  
second factor in the  r ight  member  of (2) is the  probabi l i ty  
t ha t  Fh~,/~ ---- 1, . . . ,  m, lie be tween Ah~ and Ahj,+dAh# 
after the  atomic coordinates x 1, Yl, Zl are known (com- 
pare equat ion  (12) of H a u p t m a n  & Karle (1952)). 

Denote  by  PI(A1 . . . . .  A m ) d A 1 . . . d A m  the  probabi l i ty  
t ha t  Fh~ lie be tween A~ and  A~+dAF,, p - -  1 . . . .  , m, 
after it is known tha t  the  coordinates of the  first a tom 
are x 1, Yl, zl. Referr ing to equat ions  (3.02) and  (3.03) or 
equat ions (8) and  (9) of H a u p t m a n  & Karle (1953b or 
1954 respectively),  we infer tha t  

PI(A1 . . . . .  An,) = 

1 (2~) m _co. exp  - - i  fl_2 (A.-- f lh~lh~)w.  • ~--oo p----1 
N/n 

× l l q ( f # w  1 . . . .  , f fmwm)dWl . . .dwm,  (3) 
i=2 

where 
oo co 

q ( f j l W l  . . . .  ' f jmWm) ~--" I "" I ~ (  ~:]lll . . . . .  ~:]'hm) 
_co* 

: x e x p  i ~,~s~/~w/~ d~ihl. . .d~j~m (4) 

and  P(~Shl . . . . .  ~m)d~ejhx . . .d~rn  is the  probabi l i ty  t ha t  
~ejh lies be tween ~e~l~ and ~ + d ~ / ~ ,  p = 1 . . . .  , m .  
FrOm (3) and  (4) we conclude tha t  PI(A1 . . . .  , Am) is 
proport ional  to 

e x p (  ~ (A hl'x -flh#x ~ lh#x) l'~ - - - - - - ~ - -  / '  (5) 

p=i  2m~_2f~h ~ / 

where 

and  only the  first t e rm of a rapidly converging series is 
retained.  F rom (2) we infer t ha t  (5) is also the  probabi l i ty  
dis t r ibut ion of the  ~m~,/~ ---- 1 . . . . .  m, after it is known 
tha t  the  values of Fh~ are Ahg, ~u -- 1 . . . . .  m. I t  m a y  
be concluded t h a t  the  most  probable values of the  
coordinates x I, yp z~ of those a toms characterized by  the  
scat ter ing factor f~ coincide wi th  the  principal  max ima  
of (5). Once the  coordinates of k--1  a toms are known,  
use of this addi t ional  knowledge enables one to replace 
(5) by 

1 k-1 \~ \  

- ~ / n  I " ( 7 )  
p.= l I 

j=~¢+1 /z / 
2m~ Z f~ 
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If  the phases are nnl~uown, and we assume that  the 
sign of every Eh is just  as likely to be plus as minus, 
(5) is replaced by 

. exp m [  ( (IAh~l --flh~ ~lh~)2~ - -  ~---ff~---- l 

,=1 2m2 __~2 f~:h, ] 

+ e x p (  (]-~h~I+flh~lh~)~/2m~i~=:f~x/n ]I , (8) 

a formula which, for space group P i ,  may  be compared 
with equation (78) of Haup tman  & Karle (1952). Now, 
the principal maxima of (8) determine the most probable 
values of x~, Ys, zx. For a fixed form for ~, there is an 
eightfold, fourfold, or twofold ambiguity in the choice of 
origin according as the crystal is of Category 1, 2 or 3 
(Hauptman & Karle, 1953b). In  any event, selecting 
any set of values for x x, Yl, zx as given by (8), fixes the 
origin. Then the analogue of (8) derived from (7) with 
k = 2 is the probabili ty distribution for the coordinates 
of any atom referred to a unique origin determined by 
the chosen values for Xl, yx, z x and based upon the 
knowledge of a set of magnitudes. 

The same methods apply to non-centrosymmetric 
crystals. The analogue of (7) is 

exp 

where I 0 is the Bessel function of imaginary argument. 
For space group P1, (16) is independent of x~, y~, z~, in 
agreement with the known fact that the origin may be 
arbitrarily specified, i.e. the coordinates of the first atom 
may be arbitrarily chosen. Once this is done, however, 
the case k = 2 of (9) may be obtained and then the ana- 
logue of (16) found, where now the origin is specified. 
Since, for non-centrosymmetric crystals, there are always 
two homometrie structures, related by inversion through 
a point, which are solutions to the problem, there still 
remains a twofold ambiguity in the coordinates of the 
second atom. Once one of these sets of coordinates is 
chosen the ambiguity is resolved and the cases k----- 
3, 4 .... of (9) determine all other atomic coordinates 
uniquely. Again, for space group P2, 

~lh# = 2 cos 2~(~x  1 + 4 y l )  cos 2~/aZl, (17 

~]lhl, ---~ 2 COS 2~(h~,x~ + 4Yl) sin 2$Z/pZl , (18) 

SO that  (16[ determines, except for a fourfold ambiguity,  
the values of x I and y~, but  is independent of z I (again 
in agreement with the nature of the arbitrariness in 
choosing the origin for this space group). If  we choose 
any of the four permitted values for x 1, y~, and specify 
z~ arbitrarily, thus fixing the origin uniquely, we may  
obtain the case k = 2 of (9) and proceed to find the ana- 
logue of (16). The homometric ambiguities are resolved as 

/~U / k--1 \~ [ k-1 \~.~ --IAh"--' =~1"ffhta~]hla-skh"~khla) -- (Bhl.~-- ~1.fJh#,]hla--fkh#~kh , )( 
~ - -  / '  (9) 

~=~+i j 

where the crystal structure factor is given by 

Fh~ = Xh~+/rh~,  (10) 
~/n 

Xhg = :='=~1 fih~ ~:hg , (11 ) 

~/n 

m~ = S: S 2 S2 ~gdx/dg, dz, = S2 S2 S2 ~gdx'dy'dzi' (13) 

and the values of the real and imaginary parts Xhg and 
Yhg of the structure factor Fh .  are known to be Ah, 
and Bhg respectively. - 

If the phases ~a~ of Fha are unknown, we assume that  
all values of ~n~ between 0 and 2~ are equally probable. 
Transforming to polar coordinates, 

Ah/~ ---- Rhg COS 9h#, (14) 

nh. = nh. sin ~Oh~,, (15) 

where Rh~ is the known magnitude of Eh , and integrat- • /~ 
mg over ~h~ we finally obtain the analogue of (8): 

× H I ° I  ~v/, I '  (16) . :1\  / 

in space group P1. Similar remarks apply to any non- 
centrosymmetric space group. 

The usefulness of these formulas is as yet undetermined. 
In  the first place the equations are sufficiently complex 
that  practical application m a y  be limited. In  addition, 
the assumption of the uniform distribution of the phases 
used in deriving (8) and (16), and the retention of only 
the first term in the infinite series, for the probabili ty 
distributions, may  lead to inaccuracies in atomic positions. 
Nevertheless, owing to the importance of the possibility 
of the direct location of atomic coordinates, the approach 
outlined here merits further study. 
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