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Probability methods have proven to be useful in various
aspects of the problem of crystal structure determination.
Wilson (1949) was the first to obtain probability distribu-
tions for the magnitude of a structure factor and this
work has been developed further (Howells,e Phillips &
Rogers, 1950; Wilson, 1950, 1951; Rogers & Wilson,
1953). More accurate distributions, valid for all space
groups, were obtained later (Karle & Hauptman, 1953;
Hauptman & Karle, 1953c). In the meantime a probable
relationship among the phases of certain sets of structure
factors had been found by Sayre (1952), Cochran (1952)
and Zachariasen (1952). The probability approach has
recently led to a solution of the phase problem for all
centrosymmetric space groups (Hauptman & Karle,
19530, 1954), and appears to be applicable to non-centro-
symmetric space groups as well. Probability distributions
for interatomic vectors have also been obtained (Haupt-
man & Karle, 1952). In view of the past successes of the
probability methods, the question may well be asked
whether probability distributions for atomic coordinates
may not be obtained directly, rather than probability
distributions of phases. The purpose of this note is to
obtain these distributions for all the space groups.*

We treat first the centrosymmetric erystal. The crystal
structure factor Fp is defined by

Nin
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where N is the number of atoms in the unit cell, » is the
symmetry number, fn is the atomic scattering factor,
and &p is some trigonometric function of the atomic
coordinates which depends on the space group, e.g. for
P1, &m = 2 cos 2a(ha;+ky;+1z;).

In order to find the probability distribution of the
atomie coordinates z,, ¥,, 2, of the first atom with respect
to a suitably chosen center of symmetry as origin, on
the basis that a set of m structure factors Fh yu=1,

.., m, have the known values Ah , we make use of the
relation

(é1my- - -Any)
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where the left member of (2) is the probability that
Em”,p =1,...,m, lie between rfm,, and .Em”—i-délhy
after it is known that the structure factors Fh s =1,

.., m, have the values Ah”, K is a normallzmg factor

Angy, E1ng. ..

* In this note we do not treat the case that atoms may
occur in special positions. Should these methods prove useful,
the extension to special positions may be readily carried out.

independent of the atomic coordinates z,, y,, 2; and the
second factor in the right member of (2) is the probability
that Fh yu=1, , m, lie between Ahﬂ and Ah'u+dAhﬂ
after the atomic coordmates Z,, Yy, 2, are known (com-
pare equation (12) of Hauptman & Karle (1952)).

Denote by P,(4,, ..., Arn)d4,...dA4,, the probability
that Fp, lie between 4, and A,+dd,,p=1,...,m,
after it is known that the coordinates of the first atom
are z;, ¥,, 2;. Referring to equations (3-02) and (3:03) or
equations (8) and (9) of Hauptman & Karle (1953b or
1954 respectively), we infer that
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and p(&ny» -« +» Epp)dEing . . -d&m,, is the probability that

&in, lies between &m, and §in,ta&my,, p=1,...,m.
From (3) and (4) we * conclude that P4y ..., Ap) is
proportional to
(An,—fin,&1n,)?
exp I—J——ﬁ:—-—i (6)
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and only the first term of a rapidly converging series is
retained. From (2) we infer that (5) is also the probability
distribution of the éu, u =1 ..., m, after it is known
that the values of Fh are Ah ,p=1,...,m. It may
be concluded that the most probable values of the
coordinates xy, ¥;, 2, of those atoms characterized by the
scattering factor f; coincide with the principal maxima
of (5). Once the coordinates of k—1 atoms are known,
use of this additional knowledge enables one to replace

(5) by 2
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If the phases are unknown, and we assume that the
sign of every Fp is just as likely to be plus as minus,
(5) is replaced by

m Ah — E 2
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a formula which, for space group PI, may be compared
with equation (78) of Hauptman & Karle (1952). Now,
the principal maxima of (8) determine the most probable
values of z;, y,, 2,. For a fixed form for &, there is an
eightfold, fourfold, or twofold ambiguity in the choice of
origin according as the crystal is of Category 1, 2 or 3
(Hauptman & Karle, 1953b). In any event, selecting
any set of values for z;, y,, 2z, as given by (8), fixes the
origin. Then the analogue of (8) derived from (7) with
k = 2 is the probability distribution for the coordinates
of any atom referred to a unique origin determined by
the chosen values for z,,y;,2; and based upon the
knowledge of a set of magnitudes.

The same methods apply to non-centrosymmetric
crystals. The analogue of (7) is

m
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where I, is the Bessel function of imaginary argument.
For space group P1l, (16) is independent of x,, y,, z,, in
agreement with the known fact that the origin may be
arbitrarily specified, i.e. the coordinates of the first atom
may be arbitrarily chosen. Once this is done, however,
the case k = 2 of (9) may be obtained and then the ana-
logue of (16) found, where now the origin is specified.
Sinee, for non-centrosymmetric crystals, there are always
two homometric structures, related by inversion through
& point, which are solutions to the problem, there still
remains a twofold ambiguity in the coordinates of the
second atom. Once one of these sets of coordinates is
chosen the ambiguity is resolved and the cases &k =
3,4, ... of (9) determine all other atomic coordinates
uniquely. Again, for space group P2,

&1n, = 2 cos 2n(h,z,+k,y,) cos 2al,z, , (17

M, = 2 cos 2n(h,z,+k,y,) sin 2nl,z2, , (18)
so that (16} determines, except for a fourfold ambiguity,
the values of #, and y,, but is independent of z, (again
in agreement with the nature of the arbitrariness in
choosing the origin for this space group). If we choose
any of the four permitted values for z,, ¥,, and specify
2z, arbitrarily, thus fixing the origin uniquely, we may
obtain the case k = 2 of (9) and proceed to find the ana-
logue of (16). The homometric ambiguities are resolved as

2
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where the crystal structure factor is given by

Fhn, = Xn,+1¥n,, (10)
Nin
Xn, = X fmuéing,» (11)
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and the values of the real and imaginary parts Xn, and
Y1, of the structure factor Fp, are known to be Ap,
and Bp, respectively.

If the phases gn, of Fp, are unknown, we assume that
all values of gn, between 0 and 2z are equally probable.
Transforming to polar coordinates,

Ah” = Rh” COS @h,, , (14)

By, = By, sin gn, , (15)

where Ep, is the known magnitude of Fp,, and integrat-
ing over gn, we finally obtain the analogue of (8):
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in space group Pl. Similar remarks apply to any non-
centrosymmetric space group.

The usefulness of these formulas is as yet undetermined.
In the first place the equations are sufficiently complex
that practical application may be limited. In addition,
the assumption of the uniform distribution of the phases
used in deriving (8) and (16), and the retention of only
the first term in the infinite series, for the probability
distributions, may lead to inaccuracies in atomic positions.
Nevertheless, owing to the importance of the possibility
of the direct location of atomic coordinates, the approach
outlined here merits further study.
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